Leveraging Real-World Healthcare Data to Examine Deprescribing of Medications of Questionable Benefit in Older Nursing Home Residents Nearing the End of Life

Carolyn T. Thorpe, PhD, MPH
Associate Professor, Division of Pharmaceutical Outcomes & Policy, University of North Carolina

Research Scientist, Center for Health Equity Research & Promotion, VA Pittsburgh Health System

March 3, 2020
Outline

• Background
 • Chronic disease medications of questionable benefit in the context of limited life expectancy/advanced dementia (LLE/AD)
 • Value of real-world healthcare data and observational study designs in deprescribing research

• Share results from large VA R01-equivalent study
 • Statins, hypoglycemic agents, antihypertensives
Collaborators

• Co-investigators
 • VA Pittsburgh Healthcare System:
 • Joshua Niznik, Michelle Vu, Sydney Springer, Jacob Hunnicutt, Maria K. Mor, Florentina Sileanu, Xinhua Zhao, Wendy He, Song Zhang, Sherrie L. Aspinall, Walid F. Gellad, Loren J. Schleiden, Joshua M. Thorpe, Joseph Hanlon

 • Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA:
 • Mary J. Ersek

• National VA Operations Partners
 • Geriatrics & Extended Care
 • Pharmacy Benefits Management (PBM), Center for Medication Safety (VA MedSAFE)
Disclosures

• Funding:
 • IIR 14-306, Health Services Research & Development, Department of Veterans Affairs (PI: C. Thorpe)
 • VA Office of Academic Affairs (Vu, Springer, Hunnicutt)
 • National Institute on Aging (T32AG021885, Niznik’s effort)

• J. Hunnicutt (previous VA fellow) is now employed by GlaxoSmithKline.

• No other conflicts of interest to disclose.

• The views expressed are those of the authors, and no official endorsement by the Department of Veterans Affairs or the United States government is intended or should be inferred.
Medication Burden in Older Adults near End of Life

• ~50% of seriously ill older adults take 10+ medications in the last year of life1,2

• 38%-54% are on regimens including at least one medication of questionable benefit3,4

Improving Appropriateness of Medications in Late Life via Deprescribing

Deprescribing: Discontinuing or reducing the dose of drugs when risks outweigh expected benefits in context of patient’s goals of care, life expectancy, values, and preferences.

Adapted from Holmes et al. *Arch Intern Med* 2006;166:605-609
Improving Appropriateness of Medications in Late Life via Deprescribing

• Reducing “inappropriate” medications in older adults
 • Drugs/dosages that should be avoided in all adults, or in combination with certain diseases or other drugs (e.g., Beers criteria)
 • Not the focus today

• Also: de-intensifying meds to treat/prevent complications of chronic conditions with increased risks/reduced benefits in context of limited life expectancy/advanced dementia (LLE/AD)
 • Statins for secondary prevention of CV events
 • Antihypertensives for blood pressure control
 • Hypoglycemic agents for diabetes control
The Case for Deprescribing Statins

• High potential for drug interactions, adverse effects

• RCT of discontinuation in adults with <1-year life expectancy: increased quality of life, no increase in mortality

• Inconsistency between geriatric vs. other guidelines

• One of the most commonly used medications of questionable benefit near the end of life
 • 34% of residents with life-limiting illnesses in US Medicare/Medicare nursing homes

3 Matlow et al. JAGS 2017; 65(7):1535-1542.
5 Mack et al. JAGS [epub ahead of print]
The Case for Deprescribing Hypoglycemic Agents

• Guidelines recommend “less intense” HbA1c control in adults aged ≥65 with <5 years life expectancy, comorbidities, complications
 • AGS Choosing Wisely and Department of Veterans Affairs: 8-9%

• Trials in older adults (not LLE) suggest increased harms, reduced benefits of pursuing tight HbA1c control with medications
 • ↑ hypoglycemic events/hospitalizations
 • ↔ or ↑ cardiovascular events/mortality

• In patients with LLE/AD, risks & burden likely even greater
The Case(?) for Deprescribing Antihypertensives

- Evidence on the optimal intensity of blood pressure (BP) control for older adults with LLE/AD is lacking
 - CV risk reduction benefits vs. risks of postural hypotension, falls/fractures, mortality

- Guidelines are inconsistent
 - 2017 AHA/ACC: Treat to <130/80 mmHg for ambulatory older adults; individualize targets for adults with LLE
 - ACP/AAFP: Treat to SBP <150 mmHg (vs. 140); individualize targets
 - CRIME project (2015): Avoid treating to <140 mmHg; avoid >3 antihypertensives

Knowledge Gap & Opportunity

• Information on real-world deprescribing patterns in older adults with LLE/AD is limited

• Nursing home admission is an opportunity for medications of questionable benefit to be reviewed, identified, & deprescribed

• Data resources available for VA NH residents provide a unique opportunity
Observational Studies as a Complement to Drug Withdrawal Trials

Advantages

• Avoid barriers to recruiting and enrolling participants
• Larger, more generalizable samples
• Allow us to track and evaluate real-world deprescribing patterns

Challenges with observational studies

• Ascertaining clinical characteristics
 • Identifying “potentially overtreated” patients
 • More limited range of outcomes
 • Measurement of confounders
• Accurately identifying “de-prescribing”
• Non-randomized exposure (deprescribing vs. continuing)
Overall Study Objectives

- Examine incidence, predictors, and outcomes of deprescribing of statins, antihypertensives, and hypoglycemic agents in Veterans with LLE/AD who are potentially overtreated at admission to a VA nursing home.

- National, retrospective cohort study of Veterans admitted to a Community Living Center (CLCs).

- Today: Completed work on incidence and predictors.
Deprescribing of Statins (secondary prevention) in CLC Residents

- Thorpe CT et al. Discontinuation of statins in Veterans admitted to nursing homes near the end of life. Under review.

Data Sources

• Residential History File1,2
• VA Minimum Dataset (MDS) v2.0 and v3.0 assessments
• VA bar-coded medication administration (BCMA) data
• VA Corporate Data Warehouse
• Medicare claims
• VHA Support Service Center

Sample – Statin Deprescribing

• CLC admission with completed MDS FY 2009-2015 (n=200,333)

• Meet at least 1 of 3 criteria for LLE/AD (n=81,273, 41%)
 • MDS item for “end-stage disease, <6 months to live”
 • Score ≥36 on MDS Mortality Risk Index-Revised (MMRI-R)a,b
 • Brief Interview for Mental Statusc ≤7 or Cognitive Performance Scaled ≥4

• Age ≥65 years (n=61,137, 75%)

• Minimum LOS ≥7 days (n=58,782, 96%)

• Coronary artery disease, stroke/transient ischemic attack, or diabetes (n=43,968, 75%)

• Received statin medication during first week of CLC stay (n=16,473, 38%)

• Remained in CLC for ≥14 days after medication index date (n=13,110, 80%)

Defining Statin Discontinuation

- ≥14 consecutive days after the statin index date with no statin doses given (≥30 days in sensitivity analysis)

- First day of gap (d) is the discontinuation date

```
Statin index date

Look for deprescribing

Admission

7 days

14-day

d

c-14
c = death, discharge, day 105, end of data
```
Conceptual Model: Predictors of Deprescribing

Markers of poor prognosis:
Explicit documentation of limited prognosis at admission, # comorbidities, AD, weight loss, poor appetite, renal failure, dehydration, acute change in mental status, shortness of breath, cancer, pain, infection, activities of daily living, aggressive behavior, swallowing difficulties, parenteral/tube feeding, mechanically altered diet, recent falls

Environment of care:
Year of admission, admission source, next-of-kin characteristics

Facility characteristics
US census region, rurality, bed size, complexity level, staff turnover

Socio-demographics:
Age, race/ethnicity, marital status

CV risk factors:
CV comorbidities, BMI, smoking status

Deprescribing
Analytic Approach

- Time-to-event analysis, with death as a competing risk
- 90-day cumulative incidence of statin discontinuation
- Fine & Gray subdistribution hazard models
 - Standard errors adjusted for clustering by facility
- Stratified by whether or not the Veteran’s limited prognosis (LP) was explicitly documented at admission
 - MDS item for end-stage disease, MDS item for hospice use in past 14 days, or admission to VA hospice treating specialty
Sample Characteristics (selected)

n=13,110

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>32%</td>
</tr>
<tr>
<td>75-84</td>
<td>40%</td>
</tr>
<tr>
<td>85+</td>
<td>28%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>79%</td>
</tr>
<tr>
<td>CV risk factors</td>
<td></td>
</tr>
<tr>
<td>>1 qualifying condition (CAD, stroke/TIA, diabetes)</td>
<td>61%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>94%</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>79%</td>
</tr>
<tr>
<td>Myocardial infarction in past year</td>
<td>7%</td>
</tr>
<tr>
<td>Stroke/TIA in past year</td>
<td>26%</td>
</tr>
<tr>
<td>Limited prognosis explicitly documented at admission</td>
<td>18%</td>
</tr>
<tr>
<td>Advanced dementia</td>
<td>29%</td>
</tr>
</tbody>
</table>
Cumulative Incidence of Statin Discontinuation

Stratified by Explicit Documentation of Limited Prognosis, 14-Day Gap

<table>
<thead>
<tr>
<th></th>
<th>14-Day Gap</th>
<th>30-Day Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Sample</td>
<td>31% (30%-32%)</td>
<td>26% (25%-28%)</td>
</tr>
<tr>
<td>Explicit LP Documentation</td>
<td>52% (50%-55%)</td>
<td>48% (45%-51%)</td>
</tr>
<tr>
<td>No Explicit LP Documentation</td>
<td>25% (24%-26%)</td>
<td>21% (20%-23%)</td>
</tr>
</tbody>
</table>
Factors Associated with Statin Discontinuation, p<.05
Residents with **No** Explicit Documentation of LP (n=10,736)

- Admission year fiscal year 2013 (vs. '09)
- Quartile 3 physician assistant turnover
- Age 75-84 years (vs. 65-74)
- Age ≥85 years (vs. 65-74)
- Advanced dementia
- Recent weight loss
- Poor appetite
- Dehydration
- Cancer
- Dependent in activities of daily living
- Very severe aggressive behavior
- Infection

Subdistribution Hazard Ratios and 95% Confidence Intervals
Factors Associated with Statin Discontinuation, p<.05
Residents with Explicit Documentation of LP (n=2,374)

Admitted in fiscal year 2012 (vs. 2009)
Admitted from home/assisted living (vs. hospital)
Admitted from nursing home (vs. hospital)
South census region (vs. Northeast)
West census region (vs. Northeast)
Quartile 2 of psychologist turnover (vs. quartile 1)
Congestive heart failure
Obese (vs. normal weight)
Advanced dementia
Dependent in activities of daily living

Subdistribution Hazard Ratios and 95% Confidence Intervals
Statin Deprescribing – Summary

• (at least through 2015) most VA CLC residents with LLE/AD taking a statin at admission did not have it discontinued, but…

• Discontinuation much more likely if their limited prognosis is documented at admission, but…

• Even among those with LP documented, almost half remained on statins
 • CV risk factors discourage deprescribing?
Diabetes: Deprescribing of Hypoglycemics in Potentially Overtreated CLC Residents

• Niznik JD, Hunnicutt J,…Thorpe CT. Deintensification of diabetes medications among Veterans at the end-of-life in VA nursing homes. *Journal of the American Geriatrics Society* Feb 17 2020 [epub ahead of print].

• Hunnicutt J…Thorpe C. Deprescribing hypoglycemic medications among older Veterans with overtreated diabetes and limited life expectancy in Veterans Affairs (VA) nursing homes. Oral presentation at the 2019 Annual Scientific Meeting of the American Geriatrics Society, Portland OR, May 2-4, 2019.
Sample – Hypoglycemic Deprescribing

• CLC admission with completed MDS FY 2009-2015
• Meet at least 1 of 3 criteria for LLE/AD
• Age ≥65 years
• Minimum LOS ≥7 days
• Diabetes diagnosis (n=25,341, 43%)
• Had HbA1c measured during first 90 days of CLC stay (n=6,960, 28%)
• HbA1c <7.5% and taking ≥1 hypoglycemic medication (n=3,421, 49%)
• Remained in CLC for ≥7 days after medication index date (n=3,056, 89%)
Defining Hypoglycemic Deprescribing

- ≥7 consecutive days after the index date with
 - Decreased daily dose or discontinuation of a non-insulin agent, and/or
 - Discontinuation of a type of insulin (type = short-acting or basal)

WITHOUT
- Increasing daily dose or adding a non-insulin agent or adding a new type of insulin

- ≥14 days in sensitivity analysis
Analytic Approach

• Similar set of covariates, but also diabetes-related factors
 • Baseline HbA1c, medication regimen, diabetes complications, past hypoglycemic events

• Time-to-event analysis, with death as a competing risk

• 90-day cumulative incidence of hypoglycemic de-intensification

• Fine & Gray subdistribution hazard models

• Converted subdistribution hazard ratios to risk ratios for easier interpretation
 • 95% CIs estimated using 1,000 bootstrap resamples
Sample Characteristics (selected)
n=3,056 Veterans Potentially Overtreated for Diabetes at Nursing Home Admission

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>38%</td>
</tr>
<tr>
<td>75-84</td>
<td>41%</td>
</tr>
<tr>
<td>85+</td>
<td>21%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>76%</td>
</tr>
<tr>
<td>Number of comorbidities</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>9%</td>
</tr>
<tr>
<td>2-3</td>
<td>22%</td>
</tr>
<tr>
<td>4-5</td>
<td>30%</td>
</tr>
<tr>
<td>>5</td>
<td>39%</td>
</tr>
<tr>
<td>Limited prognosis or hospice documented at admission</td>
<td>14%</td>
</tr>
<tr>
<td>Advanced dementia</td>
<td>29%</td>
</tr>
</tbody>
</table>
Medication Regimens at Baseline

<table>
<thead>
<tr>
<th>Number of diabetes medications used</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53.1</td>
</tr>
<tr>
<td>2</td>
<td>41.9</td>
</tr>
<tr>
<td>≥3</td>
<td>5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Most common treatment regimens</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-acting insulin and basal insulin</td>
<td>28.6</td>
</tr>
<tr>
<td>Short-acting insulin only</td>
<td>16.0</td>
</tr>
<tr>
<td>Basal insulin only</td>
<td>13.7</td>
</tr>
<tr>
<td>Sulfonylureas only</td>
<td>13.8</td>
</tr>
<tr>
<td>Non-insulin / non-sulfonylurea agent only</td>
<td>9.8</td>
</tr>
<tr>
<td>Short-acting insulin and sulfonylureas</td>
<td>5.0</td>
</tr>
<tr>
<td>Sulfonylureas and non-insulin / non-sulfonylurea agent</td>
<td>3.5</td>
</tr>
<tr>
<td>Short-acting insulin and non-insulin / non-sulfonylurea agent</td>
<td>2.6</td>
</tr>
<tr>
<td>Other regimens</td>
<td>7.1</td>
</tr>
<tr>
<td>≥1 high-risk hypoglycemic agents</td>
<td>75.3</td>
</tr>
<tr>
<td>Short-acting insulin</td>
<td>56.7</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>26.4</td>
</tr>
</tbody>
</table>
90-day Cumulative Incidence of De-intensification of Diabetes Medications

- Sensitivity analysis using 14-day gap: 36.1%
Factors Associated with De-intensification, p<.05

Risk Ratios and 95% Confidence Intervals

- Admitted from home or assisted living (vs. acute hospital)
- Documentation of Limited Prognosis
- Obese (vs. normal weight)
- Peripheral vascular disease
- HbA1c 6.0% to <6.5%
- HbA1c 6.5% to <7.0%
- HbA1c 7.0% to 7.5%
- Short-acting insulin + Basal insulin
- Short-acting insulin only
- Basal insulin only
- Sulfonylurea only
- Short-acting insulin + Sulfonylurea
- Sulfonylurea + non-insulin/non-sulfonylurea
- Short-acting insulin + non-insulin/non-sulfonylurea
- Other

Comparator group for HbA1c was HbA1c <6.0%; Comparator group for medication regimens was non-insulin/non-sulfonylurea agent only.
Diabetes Deprescribing – Summary

• One-third to just under one-half of residents with LLE/AD had diabetes medications de-intensified in response to below-guideline HbA1c levels (depending on gap length)
 • Once again, no strong time trends

• HbA1c and nature of medications used were strongest predictors of de-intensification

• Documentation of limited prognosis only showed modest association
Hypertension: Deprescribing of Antihypertensives in Potentially Overtreated CLC Residents

• Vu M…Thorpe CT. Antihypertensive deprescribing in older adult Veterans at end-of-life admitted to Veterans Affairs nursing homes. Under review.

• Vu M…Thorpe CT. Antihypertensive Deprescribing among Veterans with Limited Life Expectancy after Admission to Veteran Affairs (VA) Nursing Homes. Accepted for oral presentation at the 2020 Annual Scientific Meeting of the American Geriatrics Society, Long Beach, CA May 6-8.
Sample – Antihypertensive Deprescribing

- CLC admission with completed MDS FY 2009-2015
- Meet at least 1 of 3 criteria for LLE/AD
- Age ≥65 years
- Minimum LOS ≥7 days
- Hypertension diagnosis (n=50,334, 86%)
- Had BP measured and taking ≥1 antihypertensive during first week of stay (n=32,923, 77%)
- Remained in CLC for ≥7 days after medication index date (n=30,940, 94%)*
- Potentially overtreated for hypertension (n=10,574, 34%)
 - Receipt of ≥1 antihypertensive and mean systolic BP <120 mmHg^a

Defining Antihypertensive Deprescribing

- ≥7 consecutive days after the index date with
 - Decreasing the daily dose or discontinuing an antihypertensive without increasing/adding another agent
- ≥14 days in sensitivity analysis
- Shorter follow-up (30 days maximum)

Selected Characteristics: N=10,574

<table>
<thead>
<tr>
<th>Sociodemographic: age at admission</th>
<th>65-74</th>
<th>75-84</th>
<th>≥85</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
<td>37%</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CV risk factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary artery disease</td>
<td>68%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>47%</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>51%</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>22%</td>
</tr>
<tr>
<td>Recent myocardial infarction (past year)</td>
<td>6%</td>
</tr>
<tr>
<td>Recent stroke/transient ischemic attack (past year)</td>
<td>17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poor prognosis factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>History of fall/fracture in past 180 days</td>
<td>52%</td>
</tr>
<tr>
<td>Advanced dementia</td>
<td>25%</td>
</tr>
<tr>
<td>Limited prognosis documented at admission</td>
<td>36%</td>
</tr>
</tbody>
</table>
Antihypertensive Regimens at Baseline

<table>
<thead>
<tr>
<th>Treatment Administered</th>
<th>Overall</th>
<th>Low BP</th>
<th>Very Low BP</th>
<th>Low BP</th>
<th>Very Low BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (row %)</td>
<td>N=10,574</td>
<td>3,579</td>
<td>600</td>
<td>5,489</td>
<td>906</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(34)</td>
<td>(6)</td>
<td>(52)</td>
<td>(9)</td>
</tr>
<tr>
<td>Number of antihypertensive classes on admission</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>>3</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Most common antihypertensive classes (column %)</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>67</td>
<td>50.</td>
<td>49</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>Loop diuretics</td>
<td>38</td>
<td>13</td>
<td>20</td>
<td>54</td>
<td>59</td>
</tr>
<tr>
<td>Alpha-1 blockers (non-uroselective)</td>
<td>37</td>
<td>14</td>
<td>12</td>
<td>52</td>
<td>56</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>20</td>
<td>12</td>
<td>8</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>ACE/ARB</td>
<td>16</td>
<td>8</td>
<td>7</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Very Low BP = SBP <100 mmHg
Low BP = SBP 100 to <120 mmHg
Antihypertensive Regimens at Baseline

<table>
<thead>
<tr>
<th>Treatment Administered</th>
<th>Overall</th>
<th>Low BP 1 class</th>
<th>Very Low BP 1 class</th>
<th>Low BP >1 class</th>
<th>Very Low BP >1 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (row %) N=10,574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of antihypertensive classes on admission (col %)</td>
<td></td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>>3</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Most common antihypertensive classes (column %)</td>
<td></td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
<td>(col %)</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>67</td>
<td>50</td>
<td>49</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>Loop diuretics</td>
<td>38</td>
<td>13</td>
<td>20</td>
<td>54</td>
<td>59</td>
</tr>
<tr>
<td>Alpha-1 blockers (non-uroselective)</td>
<td>37</td>
<td>14</td>
<td>12</td>
<td>52</td>
<td>56</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>20</td>
<td>12</td>
<td>8</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>ACE/ARB</td>
<td>16</td>
<td>8</td>
<td>7</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Antihypertensive Regimens at Baseline

<table>
<thead>
<tr>
<th>Treatment Administered n (row %)</th>
<th>Overall</th>
<th>Low BP 1 class</th>
<th>Very Low BP 1 class</th>
<th>Low BP >1 class</th>
<th>Very Low BP >1 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=10,574</td>
<td>3,579 (34)</td>
<td>600 (6)</td>
<td>5,489 (52)</td>
<td>906 (9)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of antihypertensive classes on admission (col %)</th>
<th>Overall</th>
<th>Low BP 1 class</th>
<th>Very Low BP 1 class</th>
<th>Low BP >1 class</th>
<th>Very Low BP >1 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40 (100)</td>
<td>100 (100)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>-</td>
<td>54 (52)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-</td>
<td>33 (36)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td>8</td>
<td>-</td>
<td>13 (13)</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Most common antihypertensive classes (column %)</th>
<th>Overall</th>
<th>Low BP 1 class</th>
<th>Very Low BP 1 class</th>
<th>Low BP >1 class</th>
<th>Very Low BP >1 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta blockers</td>
<td>67</td>
<td>50 (50)</td>
<td>49 (49)</td>
<td>78 (78)</td>
<td>81 (81)</td>
</tr>
<tr>
<td>Loop diuretics</td>
<td>38</td>
<td>13 (13)</td>
<td>20 (20)</td>
<td>54 (54)</td>
<td>59 (59)</td>
</tr>
<tr>
<td>Alpha-1 blockers (non-uroselective)</td>
<td>37</td>
<td>14 (14)</td>
<td>12 (12)</td>
<td>52 (52)</td>
<td>56 (56)</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>20</td>
<td>12 (12)</td>
<td>8 (8)</td>
<td>27 (27)</td>
<td>14 (14)</td>
</tr>
<tr>
<td>ACE/ARB</td>
<td>16</td>
<td>8 (8)</td>
<td>7 (7)</td>
<td>21 (21)</td>
<td>18 (18)</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>8</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td>12 (12)</td>
<td>12 (12)</td>
</tr>
</tbody>
</table>
30-day Cumulative Incidence of Deprescribing

- Sensitivity analysis using 14-day gap: 35%
Factors Associated with Deprescribing, p<0.05
Factors Associated with Deprescribing, \(p < 0.05 \)
Hypertension Deprescribing – Summary

- 35-41% of residents with LLE/AD had antihypertensive medications de-intensified after low SBP readings (depending on gap length)
 - More likely in more recent years

- Similar to diabetes:
 - Intensity of overtreatment was strongest predictor of de-intensification
 - Documentation of limited prognosis did not play much role

- Cardiovascular risk factors → less deprescribing
- Markers of poor prognosis → more deprescribing
- History of falls/fracture → no association
Limitations – All 3 Studies

• Optimal gap for defining deprescribing is unknown
 • Cumulative incidence estimates somewhat sensitive to gap length, esp. in diabetes

• Generalizability to non-Veterans, other settings, unknown

• Data ended in 2015 and may not reflect current practice

• Observational design – cannot necessarily interpret associations as causal

• Diabetes:
 • Many had no recent HbA1c and were excluded
 • Decreases in insulin dose intensity not captured
Conclusions and Implications

- Deprescribing of chronic disease medications of questionable benefit appears to occur in one-third to one-half of VA nursing home residents with LLE/AD.

- Predictors of deprescribing varied to some degree across disease states:
 - Documentation of LP most salient for statins
 - Intensity of overtreatment most salient for diabetes and hypertension

- Further efforts are needed to encourage appropriate deprescribing and further develop evidence base regarding outcomes.
Ongoing work

• Identify and learn from facilities with different likelihood of deprescribing
 • Interviews with providers and family caregivers at “high-deprescribing” and “low-deprescribing” facilities

• Examine effect of de-prescribing on outcomes
 • Hospitalization/ED visits, mortality, falls/fractures, cardiovascular events
Other Deprescribing Work by Our Team

• Aspirin deprescribing patterns in VA CLC residents with LLE/AD
 • Springer SP…Thorpe CT. Incidence and predictors of aspirin discontinuation in older Veteran nursing home residents at end-of-life. Journal of the American Geriatrics Society 2020 Feb 13 [epub ahead of print].

• Patterns and outcomes of deprescribing acetylcholinesterase inhibitors in Medicare-enrolled nursing home residents with advanced dementia
 • Niznik JD…Thorpe CT. Impact of deprescribing AChEIs on aggressive behaviors and antipsychotic prescribing. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 2020 Feb 13 [epub ahead of print].
 • *Niznik JD…Thorpe CT. Risk for health events after deprescribing AChEIs in nursing home residents with severe dementia. Journal of the American Geriatrics Society 2020 Nov 26 [epub ahead of print].
 • *Niznik J…Thorpe CT. Factors associated with deprescribing AChEIs in older NH residents with severe dementia. Journal of the American Geriatrics Society 2019 67(9): 1871-1879.
Thank you!

Questions?

carolyn_thorpe@unc.edu