RESEARCH AND IMPLEMENTATION ON DEPRESCRIBING FROM THE VA CENTER FOR MEDICATION SAFETY IN AGING

Kenneth Boockvar, MD & Amy Linsky, MD, MSc

US Deprescribing Research Network February 4, 2025

Disclosures

- Grant Support
 - VA National Center for Patient Safety

 Dr. Linsky has received speaking and writing fees from NIA and AHRQ for deprescribingrelated work

VA Center for Medication Safety in Aging Framework

- Advance the science of deprescribing
 - National sites
 - Support development & testing of interventions
- Identify barriers/facilitators to inform implementation
- <u>Disseminate</u> deprescribing interventions across VA

Potentially inappropriate medications: Precursor to deprescribing

Risk factors

•

- Multiple providers
- Long term care / transitions in care
- Mental health conditions
- Communication / health record lapses

Negative consequences

- Adverse drug events, falls, & mortality
- Decreased quality of life & medication adherence
- Financial burden

Halli-Tierney AD, et al. *Am Fam Physician*. 2019; 100(1): 32-38.

What is Deprescribing?

Proactive and systematic process of identifying and discontinuing drugs in instances in which existing or potential harms outweigh existing or potential benefits within the context of an individual patient's care goals, current level of functioning, life expectancy, values, and preferences.

> Scott IA et al. *JAMA Intern Med.* 2015;175(5):827-834.

Veterans Health Administration

ENGAGING PATIENTS TO PROMOTE DEPRESCRIBING

Amy M. Linsky MD, MSc

Katie Fitzgerald Jones, PhD, ACHPN; Kelly Stolzmann, MS; Jolie Wormwood, PhD; Jacquelyn Pendergast, BS; Christopher J. Miller, PhD; Michael Still, MS; Barbara G. Bokhour, PhD; Joseph Hanlon, PharmD, MS; Steven R. Simon, MD; Amy K. Rosen, PhD

VA-adapted EMPOWER brochures

Medication-based cohorts

Proton Pump Inhibitors (PPIs)

- Current prescription
- <u>></u>90 consecutive days in prior year
- Excluded diagnoses where PPI would be appropriate

Sulfonylureas/insulin (Hypoglycemia Risk)

- Current prescription
- <u>></u>90 consecutive days in prior year
- Most recent A1c <7%
- >1 of the following:
 - age > 65
 - renal insufficiency
 - cog impairment

- Current prescription
- <u>></u>90 consecutive days in prior year
- Total daily dose >1800mg
- Excluded diagnoses where gabapentin is recommended

Study Design

- Pragmatic quasi-experimental trial
- 3 geographically distinct sites
- Historical Controls:
 - Primary Care Providers' (PCPs) patients before intervention
- PCPs randomized to ordering of patients in medication-based cohorts

Study Design

Key variables

- Primary outcomes
 - Deprescribing 6 months post-intervention (cessation or dose reduction, based on rx data)
 - 2. Report of deprescribing discussion
- Primary predictor receipt of intervention
- Patient and clinician characteristics
- Survey responses about deprescribing attitudes and brochure engagement

Analyses

1. Deprescribing at 6 months

- Descriptive statistics
- Hierarchical Generalized Linear Modeling to account for clustering of patients within PCPs within sites

2. Deprescribing discussions

- Descriptive statistics
- Sequential model building based on demographics, attitudes, behaviors

Patient demographics

	Intervention (2,539)	Controls (2,532)	P value
Elixhauser Mortality Index, mean +/- sd	-1.7 +/-8.4	-1.7 +/-8.2	0.96
Age, mean +/- sd	71.1 +/-11.9	70.3 +/-12.7	0.01
Medication Group, n (%)			0.12
PPI	2064 (81.3)	2000 (79.0)	
Gabapentin	97 (3.8)	105 (4.2)	
Diabetes Hypoglycemia	378 (14.9)	427 (16.9)	
Female, n (%)	145 (5.7)	134 (5.3)	0.51
Hispanic/Latino, n (%)	223 (9.3)	200 (8.3)	0.22
Married, n (%)	1235 (49.0)	1297 (51.3)	0.09
Race, n (%)			0.01
Black	326 (14.4)	272 (12.1)	
White	1854 (81.9)	1874 (83.0)	
Hispanic/Other/Multiracial	85 (3.8)	112 (5.0)	

Deprescribing outcomes

Intervention cohort 29.5% vs. Historical controls 25.8%

	OR	95% Cl	p value
Intervention vs Controls	1.205	(1.049,1.383)	0.008
Age	0.999	(0.993,1.005)	0.797
Elixhauser Mortality Index	0.997	(0.988,1.005)	0.451
Female (0/1)	1.203	(0.891,1.626)	0.227
Hispanic (0/1)	1.006	(0.772,1.312)	0.962
Race (reference: White)			0.572
Black	1.12	(0.904,1.387)	
Other	1.051	(0.753,1.467)	
Medication Group (reference: PPI)			0.001
Gabapentin	1.805	(1.313,2.48)	
Diabetes Hypoglycemia	0.896	(0.739,1.087)	
Married (0/1)	0.943	(0.821,1.083)	0.405

Survey Respondents

- 1,382 (43.1% response rate)
 - White (75%), male (95%), 66-75 years (45%)
 - Lived with other(s) (63%)
 - Adequate health literacy (89%)
- Most (71.3%) engaged with the brochure
 - 29% read it
 - 33% also completed <a>1 brochure activity
 - 9% also contacted PCP before appointment
- More than half (54%) indicated brochure caused concern

Deprescribing Discussions

- 29% reported deprescribing discussion
 - 78% indicated they initiated discussion
 - 57% explicitly discussed brochure

Factors Associated with Discussions

	OR	95% CI
Drug Cohort (ref = PPI)		
DM - Hypoglycemia	0.26	[0.16, 0.40]
Gabapentin	0.61	[0.24, 1.55]
Race/Ethnicity (ref = White)		
Black	0.31	[0.17, 0.57]
Hispanic	0.65	[0.38, 1.13]
Other/Multiracial	0.45	[0.23, 0.86]
Education (ref = high school or less)		
Some College or Vocational School	1.88	[1.29, 2.73]
College Degree	2.11	[1.27, 3.52]
Graduate/Advanced Degree	2.40	[1.35, 4.27]

Factors Associated with Discussions

	OR	95% CI
Brochure Engagement (ref = none/missing)		
Read Only	1.52	[0.94, 2.45]
Read and Engage Activities	2.23	[1.39, 3.59]
Contact PCP	2.47	[1.34, 4.58]
Discussed with Family/Friends	1.72	[1.22, 2.41]
Discussed with HCP	3.18	[2.08, 4.85]
Elevated Medication Concern	1.50	[1.03, 2.18]
Discussion is Important (ref = low/not at all/missing)	9.11	[6.52, 12.73]
Intend to Deprescribe	1.94	[1.28, 2.94]

Adjusted for variables in table, and these non-significant variables: age, gender, health status, health literacy, motivation to deprescribe, PCP relationship, healthcare navigation, healthcare ownership

Key Points

- Direct-to-patient brochures effectively promote:
 - 1. Deprescribing
 - 2. Patient engagement & deprescribing discussions
- Patient engagement is a powerful strategy to implement change in clinical practice
- Low-tech, low-cost intervention with potential for easy dissemination and spread

TELEPHARMACY MODEL OF CARE

Kristin Phillips, PharmD Christine Cigolle, MD, MPH

VA Ann Arbor Healthcare System Geriatrics Research, Education, and Clinical Center

Intervention

- 1. Medication list accuracy
- 2. Assess medication(s) **safety**
- 3. Assess patient cognitive ability
- 4. Assess patient health literacy
- 5. Assess patient physical ability
- 6. Assess **caregiver** ability to compensate for deficits in #3,4,5

Red flag Probably should not be prescribed to older adults
High risk Maybe appropriate but higher risk of ADE
Problematic combinations
Complicated Regimens

Patient Demographics (n=121)

	Number (%)
Age (years, mean)	82.4 years
Marital Status	
Married	73 (60)
Unmarried	48 (40)
Education (years)	
<u><</u> 12	12 (10)
12	21 (17)
>12	54 (45)
Unknown	34 (28)
Telemedicine Connection	
VA Video Connect (VVC)	69 (57)
Telephone	52 (43)
Pharmacy Personnel Conducting Visit	
PharmD	69 (57)
Pharmacy Technician	52 (43)

Medication Safety (Steps 1, 2)

- Mean # medications/patient: 11
- Mean # discrepancies/patient: 2.6
 - $41\% \ge 3$ discrepancies
- 30% with \geq 1 Red Flag medication
- 71% with \geq 1 High Risk medication
- Deprescribing opportunities
 - 68% with ≥ 1 deprescribing opportunity (142 meds)
 - 38 (27%) opportunities resulted in deprescribing

Comprehensive Assessment (Steps 3-6)

- 20% with cognitive and/or health literacy difficulties
- 41% with functional difficulties
- 66% had a caregiver involved

Key Points

- Address barriers to self-management
- Telemedicine
- Pharmacy technician

IMPLEMENTATION STRATEGIES FOR DEPRESCRIBING IN OLDER VETERANS AT RISK FOR FALLS

Juliessa Pavon, MD, MHS; Marc Pepin, PharmD; William Bryan, PharmD; Richard Sloane, MPH; Janine Bailey, PharmD; Ivy Ivuoma, RN; Cathleen Colón-Emeric, MD, MHS

Background

- Falls are harmful and costly, and polypharmacy is a modifiable risk factor
- FAME (Falls Assessment of Medications in the Elderly) is a VA program designed to reduce fall-risk medications
- Aim: to identify an effective, scalable approach

FAME Intervention Components

Target Medications and Patients

Target Med Classes:

Alpha-adrenergic antagonists Anticholinergics Antidepressants Antiepileptics Antihyperglycemics Antipsychotics Benzodiazepines Diuretics Sedative/hypnotics

Results: recommendation acceptance by providers and patients

Results: effects on drug burden and falls

At 1 year, FAME patients, compared to controls, had:

- Significantly decreased odds of worsening Drug Burden Index: 0.37 [95% CI 0.2-0.6]
- Trend for fewer fall-related visits

Revised Target Population for Scaling

Target Med Classes: Anticholinergics

Antidepressants Antiepileptics Antipsychotics Benzodiazepines Sedative/hypnotics

Alternative Intervention Strategies to improve scalability

Outcome: Drug Burden Index at I year

Differences in Baseline Characteristics

Patient Group		Control	Strategy	Strategy	Strategy
		n=85	1	2	3
			n=97	n=129	n=110
	Age	76.3	75.9	76.8	76.8
		(4.6)	(4.1)	(3.9)	(3.4)
	Race, White	60	71	82	79
		(71%)	(73%)	(64%)	(72%)
	Comorbidities				
	Anxiety	70	69	97	81
		(82%)	(71%)	(75%)	(74%)
	Chronic pain	80	90	120	98
		(94%)	(92%)	(93%)	(89%)
	Cognitive Impairment	4	10	14	24
		(5%)	(10%)	(11%)	(22%)
	Depression	63	66	82	72
		(74%)	(68%)	(63%)	(65%)
Medications each class					
Anticholinergics		72	81	105	99
		(85%)	(84%)	(81%)	(90%)
Antidepressants		80	93	127	105
		(94%)	(96%)	(99%)	(96%)
	Benzodiazepines	30	33	43	15
		(35%)	(34%)	(33%)	(13%)
	Sedatives	28	20	21	10
		(33%)	(21%)	(16%)	(9%)
Average number of FRIDS		3.4	3.4	3.3	3.1
medications		(0.6)	(0.7)	(0.5)	(0.3)

Results by Delivery Strategy

Results by Delivery Strategy

n=129

n=110

Veterans Health Administration

Conclusions and implications

- Strategies conferred lower odds of worsening drug burden at I year
- Program may have more impact on preventing additional prescriptions than decreasing existing use.
- Lower intensity, lower-resource strategies were as effective as others.

A BREAKTHROUGH SERIES COLLABORATIVE FOR DEPRESCRIBING ACROSS VA

Kenneth Boockvar, MD

Breakthrough Series Overview

- Team requirements: readiness, champions, commitment
- Engagement components:
 - Nationwide VA solicitation
 - Presentations from investigators and leaders
 - Small group and 1-to-1 facilitation meetings with shared learning
 - Audit and feedback of standard measures
 - Veteran and Caregiver Council input

Toolkit

- VIONE Vital, Important, Optional, Not Indicated
- Direct-to-Patient Deprescribing Materials
- Deprescribing E-consult
- IMPROVE Deprescribing Clinic
- TRIM deprescribing decision-support

Available through VA Sharepoint

Virtual Breakthrough Series

Journal of Medical Systems (2019) 43:27 https://doi.org/10.1007/s10916-018-1126-z

SYSTEMS-LEVEL QUALITY IMPROVEMENT

How to do a Virtual Breakthrough Series Collaborative

Lisa Zubkoff^{1,2,3} · Julia Neily³ · Peter D. Mills^{2,3}

Received: 21 May 2018 / Accepted: 20 November 2018 © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Abstract

Despite widespread use of the breakthrough series (BTS) collaborative in healthcare, there is limited literature on how to operationalize the method in healthcare settings. A recent modification to the model is the virtual breakthrough series (VBTS), in which all work is done remotely via telephone and web-based platforms. With virtual methods gaining popularity, this manuscript presents guidance on methods to conduct a virtual breakthrough series collaborative to assist clinical teams in implementing evidence-based practices. Manuscript describes planning activities and implementation steps for individuals interested in conducting a VBTS collaborative. Topics presented include planning/preparation activities (e.g., developing a planning committee and change package of the evidence-based interventions), estimated resources required (i.e., personnel, percent effort), activities to prepare participants for the project (e.g., orientation calls), specific actions during the virtual collaborative, and evaluation approaches. The manuscript also presents examples from our work and templates for end users. This paper is a first attempt to describe the infrastructure and processes of a VBTS collaborative and offer reproducible methods currently employed in the U.S. Veterans Health Administration.

Nationwide participation

Collaborative timeline

Site and Intervention Characteristics

	n = 21
Practice Area	
Ambulatory Care (including Geriatrics)	11
Home-based primary care	9
Nursing home	5
Other Specialty (Mental Health, Nephrology)	2
Intervention Method	
Decision Support/Population Health tool (VIONE)	15
Direct to Patient Materials (EMPOWER)	1
Intensive Individualized Review (IMPROVE)	1
Other	4

Veterans served/medications deprescribed

- Total of 8,332 medications deprescribed in 4,770
 Veterans (1-2 medications per Veteran)
- Mean 66 Veterans served and 62 medications deprescribed per site per month

	Veterans served per Site	Medications deprescribed per site	Meds deprescribed per Veteran, per site
Cohort	mean (range; SD)	mean (range; SD)	mean (range; SD)
1 (n=12)	204.3	276.2	1.3
	(41-791; 197.4)	(21-1208; 302.4)	(0.48-2.52; 0.61)
2 (n=9)	596.9	557.6	1.2
	(1-2713; 864.2)	(3-1916; 724.1)	(0.28-3.0; 0.76)

Barriers

- Staff turnover--difficult to keep up with education
 Patient target
 - Patients restart or increase target medication due to symptom relapse.
- Difficulty maintaining momentum over time
 Need to show cost-savings to maintain facility support
- Hard to intervene on medications prescribed by outside providers
- Data collection to track progress

Facilitators and unanticipated benefits

Support from providers initially uninterested in deprescribing	Providers integrating deprescribing into daily tasks
Adoption of deprescribing outside the initial setting	Increased patient agency related to medication management
Adaptable to telepharmacy	 Some sites saw changes in prescribing patterns

Journal of the **American Geriatrics Society**

MODELS OF GERIATRIC CARE, QUALITY IMPROVEMENT, AND PROGRAM DISSEMINATION

A virtual breakthrough series collaborative to support deprescribing interventions across Veterans Affairs healthcare settings

Kristin K. Phillips PharmD¹ | Marcia C. Mecca MD^{2,3} Abigail M. Baim-Lance PhD^{4,5,6} G | Gabrielle S. Schiller MPH^{6,7} Annette C. Kossifologos PharmD¹⁴ | Erica D. Martinez BA¹⁵ | Kenneth S. Boockvar MD, MS^{16,17} 🖸

Jennifer A. Pruskowski PharmD, MS^{8,9,10} [Elizabeth C. Ellis PharmD¹¹ | Deylen S. Aponte-Rosario PharmD¹² | Amanda L. Federovich-Hogan DNP^{8,13} |

QUESTION AND ANSWER

